Liposomal Formulation Administers Pharmaceuticals More Precisely

Publié par Unknown mardi 11 novembre 2014

By Mayra Pierce


Nanotechnology refers to the manipulation of substances on the atomic and molecular level. Liposomes are small encapsulating bubbles that are microscopic in size, made of materials called phospholipids that mimic human cells, and have the property of being both attracted and repelled by water. Liposomal formulation includes the process that forms those bubbles, as well the encapsulation and delivery of the drugs contained within.

The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.

The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.

This not only creates medicines that are more easily administered and managed, but does so in a bio-compatible way that leaves little toxic residue in non-targeted organs. Relatively recent developments involve the use of ultrasound to trigger release in specific locations where they are necessary. Other delivery methods include using the respiratory system, especially the lungs, where they can be activated slowly, reducing unwanted toxicity.

It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.

Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.




About the Author:



0 commentaires

Enregistrer un commentaire

mardi 11 novembre 2014

Liposomal Formulation Administers Pharmaceuticals More Precisely

Posted by Unknown 12:08, under | No comments

By Mayra Pierce


Nanotechnology refers to the manipulation of substances on the atomic and molecular level. Liposomes are small encapsulating bubbles that are microscopic in size, made of materials called phospholipids that mimic human cells, and have the property of being both attracted and repelled by water. Liposomal formulation includes the process that forms those bubbles, as well the encapsulation and delivery of the drugs contained within.

The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.

The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.

This not only creates medicines that are more easily administered and managed, but does so in a bio-compatible way that leaves little toxic residue in non-targeted organs. Relatively recent developments involve the use of ultrasound to trigger release in specific locations where they are necessary. Other delivery methods include using the respiratory system, especially the lungs, where they can be activated slowly, reducing unwanted toxicity.

It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.

Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.




About the Author:



0 commentaires:

Enregistrer un commentaire

Tags

Blog Archive

Blog Archive